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FREE-MOLECULAR GAS FLOW IN PLANE CHANNELS AND GRIDS
1
A. L. Bunimovich and M. L. Kagan

Discussion of the problem of the free-molecular flow

of a rarefied gas in plane channels or through the cells of
a grid, assuming that the grid cells and the overall geomet-
ric dimensions of the grid are less than the mean free path
of gas molecules and that the grid material is ideally heat
conducting. The probability of the passage of gas molecules
is calculated and the aerodynamic parameters of the grid are
determined for the case of diffusive reflection of gas mole-
cules from a grid or channel.

The flow of rarefied gas in plane channels and grids is discussed assuming
a free-molecular state. The parameters of the grid (channel) elements and the
total geometric dimensions of the grid are assumed to be smaller than the mean
free path of the molecules. It is also assumed that the profile of the grid is
thin and that the grid material is an ideal heat conductor. The probability of
molecule transmission and the aerodynamic characteristics of the grid are com-
puted for the case when there is a diffusion reflection of molecules from the sur-
face of the grid (channel).

1. The free-molecular flow around a plane grid of profiles. Let us consider
a plane grid of thin profiles (fig. 1). We direct the y axis along the grid axis
and the x axis perpendicular to the grid axis. The stagger angle (the angle be-
tween the x axis and the chord of the profile) is designated by y. Let us assume
that the grid moves with a constant velocity U. For convenience we reverse the

problem and assume that the grid is stationary and that the flow is incident, i.e.,

we shall consider the flow using a system of coordinates fixed with respect to
the grid. The direction cosines of the angles between the velocity vector and the
coordinate axes will be designated by tl and 12 respectively.

The distribution function of the velocities of molecules in the incident flow
corresponds to the Maxwell equilibrium distribution law at the flow temperature
Te, i.e., it has the form

s \ (1.1)

Here E, T} are the components of the thermal velocity of the molecules, R is
the gas constant.

The number of molecules n (P) which fall on the surface element (fig. 1) of
the mesh do(P) surrounding the point P, per unit time, may be represented as the
sum of the number of molecules Nl(P) of the primary (incident) flow and the number

of molecules N2(P), falling on the element do(P) due to reflection from another
profile of the mesh.
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The quantity N1+(P) for the upper pro-
\ file is given by the equation

b

\ (1.2)
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Assuming that the emission of molecules
during diffusion reflection takes place in ac-
7% cordance with Lambert's law, we obtain an ex-
pression N2+(P)

Figure 1. Schematic of the
plane grid of profiles.
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(We note that the expression for N1+, Nl' used in references 1 and 2 is inaccurate

since the shadow effect over the considered point is not taken into account,
In the same manner we determine Nl'(xo), Nz'(xo).

Thus the problem is reduced to the solution of a system of two linear inte- /130
gral equations

(1.4)

2., Aerodynamic characteristics. After determining the number of molecules
n(P) falling on the grid elements we proceed with the determination of aerodynamic
forces.

The force acting on the grid may also be represented in the following form:

| 2.1)

1

lComputed data on the probability that the gas molecules will pass through the
channel are presented in reference 3. The authors do not show an explicit ex-
pression for Nj and N,.



The reaction force of molecules in the incident flow which have fallen di-
rectly on the upper profile (without initial reflections), is determined by means
of equations which can be obtained if the expression under the integral sign in
(1.2) is multiplied respectively by

mE, € xofg;' Y for \
o ' -— - - —
where the subscript i refers to the incident molecules. The values Xf.(xo),
Yai(xo) are determined in the same way. 01
The reaction of molecules which have fallen on the upper profile after one
or more reflections may be obtained if we multiply the expression under the inte-
gral sign in (1.3) respectively by

for
|

The values X:,(x ), Y;_(xn) are determined in the same way.
i g i

Now let us determine the aerodynamic forces which occur during the reflection
of molecules (wall emission)

\ (2.2)

& (2.3)

The values X;(xo), Yr(xo) are determined in the same way.

If we assume that we have diffusion re-
flection the coefficient h contained in the
above equations depends on the wall temperature.
If we assume that the profile material is an

! ideal heat conductor, i.e., that the temperature
f over the entire profile is the same, we can
formulate the heat balance equation without
Figure 2. Sketch of the grid taking into account the external heat radiation
mesh (Channel). o
\ (2.4)

Here € is a coefficient which depends on the properties of the surface, o
is the Stefan-Boltzmann constant, S* is the reduced radiation area.

Since part of the thermal radiation again falls on the surface of the grid
mesh (fig. 2) we obtain the following equation if we assume that energy is radi-
ated according to the Lambert law



\ (2.5)
B

The energy transmitted to the upper profile by the incident gas is determined
by means of the following equation

g

(2.6)
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The value Ei' is determined in the same manner.

As we know (ref. 4) the energy removed by the reflected molecules is equal /131
to

. R (2.7)

From the law of the conservation of mass it follows that

3. The flow of rarefied gas through a plane channel. 1In this case U=0.
For simplicity we shall assume that the gas is on one side of the channel while
vacuum is on its other side. We determine the probablllty that the gas molecule
will pass through the channel. It is obvious that n (xo)-n (xg). Then system
(1.3) is transformed into a single equation '

_\ (3.1)

\

The number of molecules leaving the channel through the cross section CD is
equal to N_=Ng-N, where N0 is the number of molecules which have entered the
channel and N is the number of molecules which have left through the cross section
AB. The probability that the molecules will pass through the channel is equal to

\. (3.2)

Equation (3.1) was solved by replacement with a system of algebraic equations.
The integralin (3.1) is replaced using the Gauss equation with 4 nodes for approx-
imate integration. The function w(b/t) for the values b/t=0.1, 1, 10 is shown
in figure 3,
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4. The flow of rarefied gas around a
plane grid of plates. For simplicity we shall
assume that y=0 (i.e. the grid has no stagger)
and consider the case of high velocities |U|
>Ci=¢2RTw. Then (1.3) assumes the form
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Figure 3. The probability Now we determine the forces

that the molecules have

passed through the channel ' » ‘ o

as a function of b/t. »-:ﬁTf»f:_; - \ (4.2)

Equation (2.4) assumes the form (y=cp/cv)

From the conditions of the problem it follows that .xi+=x-= Y ~—= v Yo

LT e T . \\ (4.3)
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